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Abstract

Based on the normalization of measurement data equations of the inverse scattering problem, a new regularization matrix

is proposed. It can eliminate the unfavorable effects caused by difference of distances between field-point or source-point and target region,
reduce the loss of useful information in regularization procedure, and decrease condition numbers of the ill-posed problems. Inversion for
conductivity distribution of two-dimensional axisymmetric inhomogeneous media is carried out by combing this new regularization method
with distorted Born iterative method. Simulation results show that compared with the conventional method, the new regularization method

is of better stability, quicker convergence, higher accuracy of inversion and higher resolution.
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The difficulties of resolving inverse scattering
problem are caused by intrinsic nonlinear and ill-posed
properties. The former can be solved by using linear
approximation and iteration optimization, and the lat-
ter can usually be solved by using Tikhonov’ s

method!"!. [2=s]
[6—

Both linear inversion and nonlinear

inversion " methods dealing with nonlinear feature
of inverse scattering problem have already been wide-
ly and deeply investigated. Linear inversion method is
only suitable for inversing a weak scattering object
because it does not account for multiple scattering
caused by the object. It is necessary for inversing the
strong scattering target to employ the nonlinear inver-

sion method that accounts for multiple scattering.

Up to now, in contrast to the nonlinear problem
method processing inverse scattering, a little research
work has been done in regularization method to elimi-
nate the ill-posed property in the inverse scattering
problem and its practical application procedure. In
this paper, therefore, we address briefly on the non-
linear integral equation in two-dimensional axisym-
metric inhomogeneous media and its discretization,
and then propose a new regularization matrix, and al-
so carry out inversion for conductivity distribution of
two-dimensional axisymmetric inhomogeneous media
distorted  Born method

by using iterative

(DBIM)# 731,

inverse scattering, regularization, distorted Born iterative method.

1 Nonlinear electromagnetic integral equa-
tion in two-dimensional axisymmetric inhomo-
geneous medium

In an axisymmetric inhomogeneous medium, a
coaxial loop antenna generates a pure transverse elec-
tric (TE) wave in an axisymmetric medium. Assum-
ing that a loop antenna with radius p, carries an elec-
tric current I and is located at = = z, with time har-

monic dependence e ™, the partial differential equa-
tion for the electric field can be derived as

2

aé 1 Qp + 8_2 + k2 E
o o 9" oz ?

=—jould(p — p,)8(z - z,), (1)
where £ = w //1_5 is the wave number of the medi-
um, u the magnetic conductivity (in this paper, the
vacuum magnetic conductivity u, is chosen), €=
e(p,z) —jo(p, z)/ w is the complex dielectric con-
stant, in which ¢ is a dielectric constant and o is the
distribution of electric conductivity of medium. By
reciprocity theorem of Green’s function and Eq. (1),
we can derive the nonlinear integral equation for the
electric field as

E,(p,23p0,2) = E;%(p, 250, 2,)
+kgf dz'J de’'G,(p"s 2 5p, 2)
- 0
“E (p's2"50,,2)0(p", 2"), (2)
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where k; is wave number in vacuum, G,(p", 2 ;p,
z) the Green’s function in the background medium,

inc

and incident electric field E¢ (p,z35p,,2,) 1s
E:C(P’Z;pz’zt) = jw#OIGb(p’z;Pz’zt)' (3)
The unknown object function O(p, z) is defined as
O(p,z) = [e (p,z) —€,(p,2)]1/ &ps  (4)

where g is a vacuum dielectric constant.

In order to solve the nonlinear integral equation
(2) for the unknown object function O(p, z), the
Born's approximation is applied to linearize the non-
linear integral equation (2). In other words, in each
iteration the electric field E p D the integrand of
Eq. (2) is approximated as the incident field in the
background medium,
E,(p, 230, 2,) ~ E(p, 250, 2,)- (5)
Thus, nonlinear integral Eq. (2) can be approximat-
ed as the following linear integral equation:

E (o, z5p52,) — Exi(p z35p,0 2,)
~ ké J_w dz’ -[0 do’'G,(p", 2" 50, 2)
. Ei:c(p',z';p,,zt)O(p',z'), (6)

w Jpgey- Solving linear Eq. (6) by
DBIM[B’g], the distribution € (p, z) in the target re-
gion can be obtained.

where by, =

2 Regularization procedure and the inverse
scattering problem solving
In the given scattering data E:’at =E, - E i;,w,
dividing target region into N, sub-regions and ex-
panding object function O(p, z) by proper basis func-
tion series, the linear integral equation (6) can be
discretized into a matrix equation[s'g] as
A:+x=b, (7)
in which x is the object function vector with N, ele-
ments, b a vector with N, measurement data, A a

matrix of dimension N,, X N,

Inverse scattering problem described by Eq. (7)
is always ill-posed. In order to obtain the stable solu-
tion of Eq. (7), the regularization method, which is
usually used to circumvent the instability of inverse
scattering problem, can convert solving matrix equa-
tion (7) into solving an optimization problem, i.e.
solving the minimum value of cost function C(x).
The commonly adopted cost function C(x) of
Tikhonov’ s regularization method is defined as fol-
lows:

Cx)=lb-A-xl+yIR-xll, (8
where ¥ and R are regularization parameter and regu-
larization matrix, respectively. By minimizing the
cost function in Eq. (8), one can obtain the follow-
ing matrix equation:

(A" A+7YR"-R)-x=A"+b, (9)
where superscript * denotes the transposed complex
conjugate of a matrix, and the matrix equation (9)
can be solved by the conjugate gradient method

(CGM).

The regularization method, which can suppress
the impact of noise (measurement error or calculation
error) on the reconstructed profile, is used to smooth
target’ s profile that will be reconstructed. Regular-
ization parameter ¥ is such a parameter which adjusts
the effects of the regularization term (i.e., the sec-
ond term on the left side of Eq. (13)), and the
choice of regularization parameter Y is very impor-
tant. In order to obtain a stable solution, ¥ must be
large enough to ensure filtering out instable compo-
nents ( corresponding to high frequencies in spatial
spectrum or detail properties in space); but, ¥ can-
not be too large to avoid filtering out too many useful
frequency components in the solution and thus ensure
the accuracy and resolution of reconstruction. In
practice, regularization parameter ¥ is chosen by nu-
merical simulation and prior knowledge about target’s
profile. For example, take ¥ as a certain multiple of

the first diagonal element or the maximum diagonal

element in the matrix A * + A" The commonly

used regularization matrix R is just a unit diagonal
matrix of dimension N, X N,, which means that each
sub-region of target region has the same absolute
smoothing value. In such a case, for a given regular-
ization parameter ¥, it may take place that useful fre-
quencies are filtered out from some sub-regions, while
instable components remained in the other ones,
which will lead to obviously decreasing of the accura-
cy and resolution of reconstructed target’ s profile.
The matrix R* + R has been chosen as the diagonal
matrix of A" + A in Ref. [15], because it includes
information about background medium and the dis-
tances from measurement point or/and source point to
target’s region, the choice of regularization parameter
¥ becomes easier (regularization parameter ¥ may be
taken as 0.1 for all of different background medium
and their measurement points, and position of source)
and better reconstructed results are obtained.

In a practical measurement procedure, distances
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from position of the different field point and source
point to target’s region may varies freatly (especial-
ly, in geophysical well logging, exciting coil and re-
ceiving coil only move along the borehole) so that dif-
ferences between values in different rows of matrix A
of Eq. (7) become very large. Thus, the direct opti-
mum process according to cost function (8) will result
in serious loss or submerging of measurement infor-
mation cortesponding to the small elements in matrix
A, which leads to decreasing of the accuracy and res-
olution of reconstruction. For this reason, two sides
of Eq. (7) are divided by the maximum element in
each row in ‘matrix A and then a new equation can be
obtained as follows:

P-x=ce, (10)
where

e(¢) = b(i) a,, (i), i=1,-,N,,
(11a)
P(i,j) = AGi,5)/ ap,(i), '
j=12,,N, (11b)

@) = max [A(i,j),j = 1,,N,1I,
i=1,-,N,_. (11c)

Since this method balances the importance for each
measurement data, unfavorable impacts caused by
difference of distances from field source points to tar-
get’ s region can be considerably reduced. By mini-
mizing the cost function determined according to' Eq.
(8), one has

(P"-P+yR"R)-x=P" +e. (12)

In the above-mentioned processing, the loss of
information of measurement data is much smaller than
that of using usual method. At the same time, this
processing can reduce condition number of the ill-
posed problems, improve stability and convergence of
inversing scattering problem, and also increase accu-
racy and resolution of the inversion results.

In order to overcome defects caused by using unit

diagonal regularization matrix R (R " + R is also a u-
nit diagonal matrix), let

Pusx(i) = max [ (P - P)(i,j),j = 1, N, 1,
i —_ 1’“"Np
Gae = maxi(P" +» P)(i,3)/ po. (i),
i = 1’...‘1\]1)}

(13)
and define R* « R in formula (12) as follows:

(R” + R)(4,j)

| WP (D) + (P7 - PY(iy 1), i=
0, PG
(14)

where a is a proportional constant (0 < a < 0.5).
Choosing a suitable value (recommended value is @ &
0.1), the stability, convergence, accuracy and reso-
lution of inversing scattering problem can be improved
further. Simultaneously, the above-mentioned pro-
cess can be easily applied to any inverse method {for
examples, BIM, DBIM and so forth) for solving any
inverse scattering problem (for example, problems of
two-dimensional or three-dimensional geophysical and
medical imaging) .

3 Numerical results and discussion

The inversion for distribution of axisymmetric
two-dimensional inhomogeneous media has been car-
ried out by combining new modified regularization
method together with distorted Born iterative method
(so-called MR-DBIM method). And also, the new
method as well as the accuracy of inversion results has
been evaluated using relative residual error (RRE, Eq
(15a)) between the calculated value about data of
scattering field and measurement value, and relative
mean square error (MSE, Eq(15b)) between the re-
constructive profile of medium distribution inside the

target’s region and original profile.
N

RRE = >, | (EJ™), - (E5™),, |
=1

m

N
/3@, (152)
N, — N,

MSE = /2 La(p) —a"(p) IZ/Z L alp) 1%,
p=1 p=1
(15b)

is the measurement value of scattering

scat
?

field, (E :ﬂt)" the calculated value of scattering field
after nth iteration, 6(p) the actual value of electric
conductivity distribution in the pth patch of target’s

where E

region, and " (p) the reconstructed value of media
distribution in the pth patch for target’s region after
nth iteration.

In this paper, reconstructed results are given us-
ing the data obtained by induction measurement in
the geophysical well logging. In induction logging,
the operation frequency is usually 20 kHz, displace-
ment current can be neglected in this case, thus one

can set relative permittivity e, =1 and ki jops . In
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the following examples, we can assume that conduc-
tivity of background media o, is 0.1 s/m except for
borehole, and the conductivity in bolehole, o, , is
0.01 s/m. The induction tool consists of one exciting
coil and eight receiving coils. The ordinates of receiv-
ing coils are taken as z, = 2, £15.24 cm, =z, +30.48
cm, z, +45.72 cm and 2, £ 63.50 cm, respectively,
where 2, denotes the ordinate of exciting coil. This
tool is moved from 99.06 to 99.06 c¢m with an incre-
ment of 5.08 cm. This makes the total number of

measurement data equal to 320.

Fig.1(a) shows the original conductivity profile
of the target’s area with peak value 0.98 s/m and the
conductivity contrast is relatively low and its profile
also varies slowly. Fig.1(b)—(e) show the inversion
results and the curves of relative residual error and
relative mean square error versus the iteration num-
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ber. The abnormal region of resistance and target’s
region to be inverted are the same, which covers the
area —30.48 cm<<2<.30.48 cm, 25.40 cm<p<<
86.36 cm. The target’ s region is divided into sub-
meshes with 12 X 12 = 144. The conductivity profile
is reconstructed separately by the improved regular-
ization method and conventional regularization
method combined with DBIM (shown in Fig. 1(b)
and (c)). We ¢an clearly see that the reconstructed
profile (Fig.1 (b)) by our method is almost the same
as the original profile, and the accuracy of reconstruc-
tion is very high. But, there are some differences be-
tween the reconstructed profile (Fig. 1(c)) by the
conventional regularization method and the original
profile. Comparing Fig. 1(d) with 1(e), we can see
that both of RRE and MRE converge fast while the
convergence error of our method is smaller than that
of the conventional regularization method.
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Comparison of the results inverted by DBIM combined with improved regularization method and conventional regularization

method, respectively. (a) Original profile of conductivity distribution; (b) inversion result using DBIM combined with improved regular-
ization method; (c) inversion result using DBIM combined with conventional regularization method; (d) RRE versus the iteration number;

(e) MSE versus the iteration number.

We have further tested the stability and conver-
gence of our method by increasing the conductivity
contrast in the condition of keeping the same shape of
original conductivity profile. The peak value of profile
was increased to 23.48 s/m from 0.98 s/m for the
above example, and the other parameters such as in-
version region and mesh division were kept the same
as the above example. The similar conclusion shown
in Fig. 2 has been obtained. It can be seen from Fig.
2 (d) that the amplitude of oscillation is very small by

using our method and only appears at a very small
value of the RRE though there are oscillations in two
curves of relative residual error, which shows that our
method is more stable than the conventional method.
It can also be seen that relative MSE of conductivity
distribution keeps stable (shown as in Fig. 2 (e))
while using both the two methods, which indicates
that it is necessary to observe simultaneously the RRE
variation and relative MSE in studying properties of some
inverse scattering method and regularization method.
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method. (a) Original profile of conductivity distribution; (b) inversion result using DBIM combined with improved regularization method;
(¢) inversion result using DBIM combined with conventional regularization method; (d) RRE versus the iteration number; (e) MSE ver-

sus the iteration number. '

To verify resolution of the algorithm given in vergence error using the method given in this paper is
this paper, we have carried out an inversion of con- smaller than that by the conventional regularization
ductivity distribution with discontinuous profile method. Fig. 3(b) and (c) show that though both of
(shown in Fig. 3(a), with peak-value 10 s/m). The the methods can resolve out two abnormal regions of
reconstructed profile of conductivity and the curves of conductivity, the image reconstructed by the method
RRE and MSE versus the iteration number are shown given in this paper is clearer than that by DBIM com-
in Fig. 3. It can be seen that even if under sudh a bined with the conventional regularization method
condition of discontinuous conductivity profile, both dose, indicating that the resolution of DBIM com-
of RRE and MSE converge very quickly and the con- bined with improved regularization method is higher.
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Fig. 3. Comparison of the results inversed by DBIM combined with improved regularization method and conventional regularization

method. (a) Original profile of conductivity distribution; (b) inversion result of DBIM combined with improved regularization method;
(c) inversion results of DBIM combined with conventional regularization method; (d) MSE versus the iteration number.
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4 Conclusions

A new regularization matrix is described in this
paper. Combining this matrix with distorted Born it-
erative method, the inversion for conductivity distri-
bution of two-dimensional axisymmetric inhomoge-
neous media is carried out. The reconstructed exam-
ples show that the new regularization method im-
proves the stability, convergence and the reconstruct-
ed accuracy and resolution of reconstruction signifi-
cantly. In addition, construction and application of
the new regularization matrix are easy. We will ex-
tend this regularization method to other inverse meth-
ods (for instance BIM method) or other applied do-
mans (such as biomedical imaging) in the future.
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